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We have studied diffusion in a quasi-two-dimensional granular gas composed of plastic balls confined in a
vertically vibrating thin box. The horizontal motion of the balls in the box is found to follow the Langevin
equation with the top and bottom of the box acting on the balls with a viscous drag like that in a fluid.
Surprisingly, we find that both the granular temperature and the diffusion constant increase with the number of
balls �N� in the box for small N. The unusual diffusion can be explained by a two-state model, in which a ball
is in contact with two effective temperature baths due to collisions with the top or bottom of the box and
collisions with other balls.
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From simple kinetic theory, the diffusion rate of a mol-
ecule in an ordinary gas decreases with density �1�. The rea-
son is simple: higher density implies shorter mean free path,
and hence, more frequent collisions that randomize molecu-
lar motion. If the average kinetic energy of a molecule in-
creases after collision, it is possible to observe an unusual
diffusion phenomenon such that the diffusion rate increases
with density. In a granular gas, collisions are dissipative and
the total kinetic energy of the particles involved in a collision
decreases after the collision. Hence, one would not expect to
find unusual diffusion in a granular gas. Here, we report a
quasi-two-dimensional granular gas that exhibits this unusual
diffusion, which can be explained using a two-state model
based on the energy flow within the gas. We believe that the
explanation of the unusual diffusion by this model provides a
way to tackle general nonequilibrium steady-state problems,
which involve several stochastic processes.

A granular gas, which consists of macroscopic particles
colliding with each other dissipatively, can be sustained in a
nonequilibrium steady state when the energy dissipated in
inelastic collision is balanced by external energy sources �2�.
However, the behavior of the granular gas depends on the
details of energy injection �3�. If energy is injected through
boundaries, unavoidable spatial inhomogeneity will compli-
cate our understanding of the granular gas �4–8�. Neverthe-
less, it is possible to achieve uniform heating and cooling if
the particles are confined in a vertically vibrating thin box
�9–11�. A particle in the box may gain or lose its horizontal
speed when colliding with the top or the bottom or with other
particles. On average, energy is transferred from the vertical
motion of a particle to its horizontal motion and dissipated
by inelastic collisions �11–13�. One may consider the hori-
zontal granular gas to be in contact with two effective tem-
perature baths: a high-temperature bath, in which a particle
gains its horizontal speed on average, and a low-temperature
bath, in which a particle loses its horizontal speed on aver-
age. Based on this model, physical properties such as granu-
lar temperature, diffusion constant and velocity distribution
of such quasi-two-dimensional granular gases �Q2DGSs� can

be calculated. We find that the diffusion constant of the
Q2DGS increases in the number of balls in the box in the
dilute regime.

A schematic diagram of our experimental setup is shown
in Fig. 1. Plastic balls in four different colors, each of them
having mass m=0.115 g and diameter d=5.94 mm, are put
in a circular acrylic box of internal height h=12.5 mm and
internal radius R=150 mm. The internal walls of the box are
coated with antistatic spray to avoid electrostatic effects. The
box is mounted on a vibration platform which oscillates
up and down sinusoidally at frequency F=20 Hz and
amplitude A=1.84 mm. A fast color camera �C�, of
1024�1024 pixel2 with 10 �m spatial resolution, is used to
take images from above at 1000 fps. Using balls of different
colors together with a fast color camera, we can track the
horizontal trajectories of the balls even at high densities.
From the trajectories, we obtain the horizontal velocity com-
ponents and compute the velocity distributions. We also cal-
culate the mean-square displacement �MSD� in the horizon-
tal plane.

Figure 2 shows that MSD= �vT
2�t2 for t�0.01 s. This im-

plies that the balls move in a straight line with a mean square
speed �vT

2� at small t. We define the granular temperature as
Tg= 1

2m�vT
2� which is the average horizontal kinetic energy of

a ball. On the other hand, MSD increases linearly with t for
t�0.1 s, indicating that the balls move diffusively with a
diffusion constant D given by MSD=4Dt. The crossover
from ballistic motion to diffusive motion takes place at
t�0.025 s, which is half the shaking period. This is reason-
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FIG. 1. �Color online� The schematic diagram of the experimen-
tal apparatus. The two images shown in the figure were taken at
N=500 �left� and 1200 �right�.
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able because if a ball moves up and down with the shaking
frequency, the time between collisions with the top/bottom is
roughly half the shaking period. Interestingly, MSD for
N=500 is smaller than that for N=1000, implying faster dif-
fusion at higher density. When we repeat the experiment for
N between 50 and 1800, we find that both D and Tg increase
with N for N�Nc�900 as shown in Fig. 3. For N�Nc, D
decreases with N while Tg stays nearly constant and then
decreases when N�1500. This unusual diffusion can also be
observed in experiments using copper spheres and in mo-
lecular dynamic simulations.

To understand the results of our experiments, we start
from the observation of the motion of a ball. Its vertical
motion, which is not detected by our camera, can be rather
complicated �13,14�. If the ball bounces up and down be-
tween the top and the bottom with the oscillation frequency
of the box, its vertical speed should be of the order of
vz�2�h−d� F=260 mm /s. Clearly, a ball in the granular

gas experiences two types of collision: collision with the top
or the bottom �type-1� and collision with another ball �type-
2�. For a ball with nearly zero horizontal speed, a type-1
collision gives the ball a small random horizontal speed
v1��vz� due to the imperfect spherical shape of the ball and
the surface roughness of the top and bottom. For a fast mov-
ing ball, its horizontal speed is reduced after a type-1 colli-
sion, due to the fact that the tangential restitution coefficient
is less than one. Hence, on a time scale longer than the in-
verse collision rate, the type-1 collisions act on the balls with
a viscous drag like that in a viscous fluid. On the other hand,
a slowly moving ball will most likely acquire a large hori-
zontal speed comparable to vz after a type-2 collision. Since
the velocities of the colliding balls change according to their
three-dimensional kinematics, the impulse to a ball due to a
type-2 collision can be treated as stochastic when projected
onto the horizontal plane �12–14�. Therefore, the Q2DGS is
analogous to a colloidal system without hydrodynamic inter-
action and the motion of the balls should follow the Lange-
vin equation: m dv

dt =−�v+	, where � is the effective viscosity
and 	 is the stochastic force due to type-1 and type-2 colli-
sions. The solution to the Langevin equation implies that
MSD grows linearly with time at long time and quadratically
at short time �1�. This explains why the balls move ballisti-
cally at short time and diffusively at long time.

While the type-1 collision rate should be comparable to
the box vibration frequency, the type-2 collision rate f should
increase with N. To find the type-2 collision rate at different
N, we need a more detailed examination of the motion of the
balls. Figure 4 shows a typical trajectory of a ball together
with the time record of its horizontal speed at N=500. In this
trajectory the ball experiences type-2 collisions at
t=20,350,450, . . . , ms. Consider the collision at t=20 ms.
Right after this collision, the ball acquires a speed
v0�300 mm /s, which is comparable to the vertical speed vz
and much higher than the random speed �v1�25 mm /s� due
to type-1 collision. Then its speed drops to v1 in

2�100 ms. From this observation, we can consider a ball
in the Q2DGS to be in two possible states: a high-speed state
�HSS�, in which the ball moves nearly in a straight line with
an average speed v̄2, and a low-speed state �LSS�, in which
the ball performs random motion with an average speed v̄1
due to type-1 collisions.
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FIG. 2. �Color online� Mean square displacement for N=500
�red squares� and 1000 �blue circles�.
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FIG. 3. �Color online� Variation of the diffusion constant D and
the granular temperature Tg in the granular gas at different N. The
lines in the graphs are the theoretical predictions from the two-state
model and the crosses are the results from molecular dynamic
simulations.

FIG. 4. �Color online� Time record of the horizontal speed of a
ball at N=500. The inset shows the horizontal trajectory of the ball.
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Note that both HSS and LSS are nonequilibrium states
because energy is not conserved in type-1 and type-2 colli-
sions. Nevertheless, the velocity distribution of the balls in
each of these two states should be a stretched exponential �3�
of the form e−�v / b�� with 1���2. Hence, the velocity dis-
tribution P�v� of the Q2DGS should be a sum of two
stretched exponentials weighted by the ball fractions in each
of the two states. Since the velocity distributions in the two
orthogonal directions are identical, we use both components
to construct the normalized velocity distribution

P̃�v�	 P�v� / P�0�. It is found �see Fig. 5� that for N�1000,

P̃�v� can indeed be fitted to

P̃�v� = �1 − �e−�v/b1�� + e−�v/b2��, �1�

with � increases with N. At higher densities, P̃�v� can be
fitted to a single stretched exponential e−�v / b2�� with � varies
between 1.6 and 1.9. Figure 6 shows the parameters obtained
from the fitting. Since b1 and b2 are the typical speeds for the
balls in HSS and LSS, they are of the same order of v̄1 and
v̄2, respectively. The quantity  is the fraction of balls in
HSS and it is also the time fraction that a ball stays in HSS.

Let the lifetime of HSS be 
= �
2�. It depends on the ef-
fective viscosity due to type-1 collisions. A ball in HSS
sweeps an interaction area 2dv̄2
 before it returns to LSS.
The ball will stay in LSS for some time 
1� until a type-2
collision excites it back to HSS. The mean squared distance
moved during LSS is 4D1
1� and the area covered is 4�D1
1�.
Here, D1 is the effective diffusion constant due to type-1
collisions and its value ��5.5 mm2 /s� can be taken from the
measurement at N=50. Since a ball experiences f type-2
collisions in one second, the fraction of time that a ball
spends in HSS will be = f
 and that for LSS will be
1− f
. Therefore, the total interaction area covered in one
second will be a= f2dv̄2
+4�D1�1− f
�. The type-2
collision rate will be pN

�R2 a, where �R2=7.07�104 mm2 is
the base area of the box and p=d /h approximates the
probability that two balls actually collide when their
projected separation is less than d. Hence, we have

f = pN
�R2 �f2dv̄2
+4�D1�1− f
��. After some algebra we

arrive at

 = f
 =
2�D1

��R2�/�2pN
� − �dv̄2 − 2�D1�
. �2�

When f
=1, most of the balls are in HSS. This happens
when N=Nc=945 according to Eq. �2�. Hence, the start of
the flattening of Tg near Nc in Fig. 3 is a signature that the
stochastic force 	 in the Langevin equation becomes domi-
nated by that due to type-2 collisions. At higher densities, D
decreases with N, as expected for an ordinary gas.

To see why D increases with N when N�Nc, we suppose
that the Q2DGS is in contact with two effective temperature
baths of temperature T1 and T2 due to type-1 and type-2
collisions, respectively. Clearly the coupling of the granular
gas to T1 and T2 should be proportional to the fraction of
time during which the ball is in random motion and in linear
motion, respectively. So the granular temperature can be ex-
pressed as

Tg = �1 − ��1T1 + �2T2, �3�

where �1 and �2 are the coupling constants to bath-1 and
bath-2, respectively. Since there is net energy flow into the
Q2DGS via type-2 collisions, there is always a temperature
difference between bath-2 and the Q2DGS. Let v̄0 be the
average speed of the ball right after a type-2 collision. Then
the temperature of bath-2 should be T2=mv̄0

2 /2. Meanwhile,
the mean speed of a ball in HSS is v̄2= �v̄0+ v̄1� /2� v̄0 /2
because v̄0� v̄1. So �2=1 /4. When N�Nc �i.e., �1�,
Tg�T2 /4. Our data shows that Tg at Nc is 1.1�10−6 J.
Hence, T2=4.4�10−6 J. If type-2 collisions are rare, the
Q2DGS can be considered to be in contact with bath-1 only.
Since the energy of the Q2DGS is constant, the Q2DGS is in
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FIG. 5. �Color online� Normalized velocity distribution P̃�v� for
N=50 �blue circle�, 200 �red square�, 500 �green diamond�, and
1800 �cyan triangle�. The lines are obtained using expression �1�.
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FIG. 6. Parameters: � �circle�, b1 �diamond�, b2 �square�, and 
�filled circle� used for fitting the experimental normalized velocity

distribution P̃�v� to expression �1�. The line in the  vs N graph is
obtained by expression �2�.
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quasiequilibrium with bath-1 and hence Tg=T1 and
�1=1. The data at N=50 �i.e., �0� shows that
T1=Tg=0.054�10−6 J.

Putting these values in expression �3� and using Eq. �2�,
we obtain a reasonable fit of the expected granular tempera-
ture from the two-state model for N�Nc, as shown in Fig. 3.
By similar argument, the diffusion constant of the Q2DGS
can be expressed as D= �1−�D1+D2 with D2 being the
diffusion constant of a ball in HSS. At N=Nc, all the balls are
in HSS and D2=100 mm2 /s from our measurements. With
this value for D2, the diffusion constant from the two-state
model fits the experimental data well for N�Nc, as shown in
Fig. 3. For N�Nc, the number of events that a ball encoun-
ters another type-2 collision before returning to LSS become
significant and the two-state model will not apply.

There has been experimental work on similar Q2DGS in
which no unusual diffusion is reported. Baxter and Olafsen
�9� used a two-layer setup to implement a Gaussian thermo-
stat for their Q2DGS to obtain a Maxwell-Boltzmann veloc-
ity distribution. Reis et al. �11� constructed a Q2DGS very
similar to ours except that the bottom of their vibrating box
is rough. They studied the velocity distribution in terms of
the Sonine polynomial expansion. Although they reported an
increase in the granular temperature with density in a setup

with smooth bottom, they did not study the diffusive behav-
ior in this setup. In the two-layer or rough bottom systems, a
ball in the Q2DGS could acquire substantial horizontal speed
by colliding with either the first layer dimer or the rough
bottom, respectively. Collision with another ball would not
change its speed very much. There would be only one single
state in these systems and the unusual diffusion would not be
observed.

Clearly, the two-state model does not involve the collision
details. As long as a particle can be excited to a high-speed
state and stays there with a finite lifetime 
, the system will
exhibit unusual diffusion when 
 is less than the inverse
excitation rate. This is indeed confirmed by our molecular
dynamic simulations of the Q2DGS and the details will be
given in another paper.
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